(http://mikemstech.blogspot.com/2014/07/c-matrix-inversion-with-latex-output.html)
I demonstrated an application that can generate the steps to show the
inversion of a matrix by Gauss Jordan elimination.
In a few posts, I plan to answer the following questions:
What is the inverse of a 1x1 Matrix?
What is the inverse of a 2x2 Matrix?
What is the inverse of a 3x3 Matrix?
What is the inverse of a 4x4 Matrix?
Back to Mike's Big Data, Data Mining, and Analytics Tutorial
The inverse of a 3x3 matrix is defined as follows. For a 3x3 matrix:
$$ A = \begin{pmatrix}a & b & c \\ d & e & f \\ g & h & i\end{pmatrix} $$
$$ A^{-1} = \begin{pmatrix}
\frac{f h-e i}{c e g-b f g-c d h+a f h+b d i-a e i}
& \frac{c h - b i}{- c e g + b f g + c d h - a f h - b d i + a e i}
& \frac{c e - b f}{c e g - b f g - c d h + a f g + b d i - a e i } \\
\frac{f g - d i}{- c e g + b f g + c d h - a f h - b d i + a e i}
& \frac{c g - a i}{c e g - b f g - c d h+ a f h + b d i - a e i}
& \frac{c d - a f}{- c e g + b f g + c d h - a f h - b d i + a e i} \\
\frac{e g - d h}{c e g - b f g - c d h + a f h + b d i - a e i}
& \frac{b g - a h}{- c e g + b f g + c d h - a f h - b d i + a e i}
& \frac{b d - a e}{c e g - b f g - c d h + a f h + b d i - a e i}
\end {pmatrix} $$
The latex code generated for a 3x3 inverse is the following:
\documentclass{article} % This is the output from LatexMatrixInverse 1.0 for a matrix with rank 3 % For more information on this application, see % http://mikemstech.blogspot.com \usepackage{geometry} % Note: you should probably use pdflatex to compiile this file. % Other processors are known to have some issues with using % 'geometry' to set paper size % Adjust the page size here if output is wrapping in a bad way. % Default is 8.5 x 11 in (Letter) \geometry{papersize={40in,14in}} %Import AMS Latex packages \usepackage{amsmath, amssymb} \setcounter{MaxMatrixCols}{7} %Variable definition \begin{document} % Definition of initial A % A row 1 \newcommand{\ARbCb}{a} \newcommand{\ARbCc}{b} \newcommand{\ARbCd}{c} % A row 2 \newcommand{\ARcCb}{d} \newcommand{\ARcCc}{e} \newcommand{\ARcCd}{f} % A row 3 \newcommand{\ARdCb}{g} \newcommand{\ARdCc}{h} \newcommand{\ARdCd}{i} % Definition of initial B \newcommand{\BRb}{j} \newcommand{\BRc}{k} \newcommand{\BRd}{l} LatexMatrixInverse 1.0 Output for rank 3, ShowIntermediateSteps is True. For more information on this application, please see http://mikemstech.blogspot.com Given the following initial matrices: \begin{equation*} A = \begin{pmatrix}\ARbCb &\ARbCc &\ARbCd \\\ARcCb &\ARcCc &\ARcCd \\\ARdCb &\ARdCc &\ARdCd \end{pmatrix}B = \begin{pmatrix}\BRb\\ \BRc\\ \BRd\end{pmatrix}\end{equation*} We want to find $A^{-1}$ and $A^{-1} B$... \begin{equation*} \left ( \begin{array}{ccc|ccc|c}\ARbCb &\ARbCc &\ARbCd &1 &0 &0 &\BRb\\ \ARcCb &\ARcCc &\ARcCd &0 &1 &0 &\BRc\\ \ARdCb &\ARdCc &\ARdCd &0 &0 &1 &\BRd\end{array} \right ) \end{equation*} \begin{equation*} \xrightarrow{\frac{1}{\ARbCb} R_{1}} \left ( \begin{array}{ccc|ccc|c}1 &\frac{\ARbCc}{\ARbCb} &\frac{\ARbCd}{\ARbCb} &\frac{1}{\ARbCb} &0 &0 &\frac{\BRb}{\ARbCb}\\ \ARcCb &\ARcCc &\ARcCd &0 &1 &0 &\BRc\\ \ARdCb &\ARdCc &\ARdCd &0 &0 &1 &\BRd\end{array} \right ) \end{equation*} \begin{equation*} \xrightarrow{R_{2} - \left ( \ARcCb\right ) R_{1}} \left ( \begin{array}{ccc|ccc|c}1 &\frac{\ARbCc}{\ARbCb} &\frac{\ARbCd}{\ARbCb} &\frac{1}{\ARbCb} &0 &0 &\frac{\BRb}{\ARbCb}\\ 0 &\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) &\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) &0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right ) &1 &0 &\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )\\ \ARdCb &\ARdCc &\ARdCd &0 &0 &1 &\BRd\end{array} \right ) \end{equation*} \begin{equation*} \xrightarrow{R_{3} - \left ( \ARdCb\right ) R_{1}} \left ( \begin{array}{ccc|ccc|c}1 &\frac{\ARbCc}{\ARbCb} &\frac{\ARbCd}{\ARbCb} &\frac{1}{\ARbCb} &0 &0 &\frac{\BRb}{\ARbCb}\\ 0 &\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) &\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) &0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right ) &1 &0 &\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )\\ 0 &\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) &\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) &0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) &0 &1 &\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )\end{array} \right ) \end{equation*} \begin{equation*} \xrightarrow{\frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} R_{2}} \left ( \begin{array}{ccc|ccc|c}1 &\frac{\ARbCc}{\ARbCb} &\frac{\ARbCd}{\ARbCb} &\frac{1}{\ARbCb} &0 &0 &\frac{\BRb}{\ARbCb}\\ 0 &1 &\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} &\frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} &\frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} &0 &\frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\\ 0 &\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) &\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) &0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) &0 &1 &\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )\end{array} \right ) \end{equation*} \begin{equation*} \xrightarrow{R_{3} - \left ( \ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )\right ) R_{2}} \left ( \begin{array}{ccc|ccc|c}1 &\frac{\ARbCc}{\ARbCb} &\frac{\ARbCd}{\ARbCb} &\frac{1}{\ARbCb} &0 &0 &\frac{\BRb}{\ARbCb}\\ 0 &1 &\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} &\frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} &\frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} &0 &\frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\\ 0 &0 &\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right ) &0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right ) &0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right ) &1 &\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right )\end{array} \right ) \end{equation*} \begin{equation*} \xrightarrow{\frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )} R_{3}} \left ( \begin{array}{ccc|ccc|c}1 &\frac{\ARbCc}{\ARbCb} &\frac{\ARbCd}{\ARbCb} &\frac{1}{\ARbCb} &0 &0 &\frac{\BRb}{\ARbCb}\\ 0 &1 &\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} &\frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} &\frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} &0 &\frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\\ 0 &0 &1 &\frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd} {\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )} {\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\end{array} \right ) \end{equation*} \begin{equation*} \xrightarrow{R_{2} - \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right ) R_{3}} \left ( \begin{array}{ccc|ccc|c}1 &\frac{\ARbCc}{\ARbCb} &\frac{\ARbCd}{\ARbCb} &\frac{1}{\ARbCb} &0 &0 &\frac{\BRb}{\ARbCb}\\ 0 &1 &0 &\frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &\frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )}\right ) &0 - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )} \right ) \linebreak \left ( \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &\frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )} \right ) \linebreak \left ( \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\\ 0 &0 &1 &\frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )}\end{array} \right ) \end{equation*} \begin{equation*} \xrightarrow{R_{1} - \left ( \frac{\ARbCd}{\ARbCb}\right ) R_{3}} \left ( \begin{array}{ccc|ccc|c}1 &\frac{\ARbCc}{\ARbCb} &0 &\frac{1}{\ARbCb} - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &0 - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &0 - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &\frac{\BRb}{\ARbCb} - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\\ 0 &1 &0 &\frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &\frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &0 - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &\frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\\ 0 &0 &1 &\frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\end{array} \right ) \end{equation*} \begin{equation*} \xrightarrow{R_{1} - \left ( \frac{\ARbCc}{\ARbCb}\right ) R_{2}} \left ( \begin{array}{ccc|ccc|c}1 &0 &0 &\frac{1}{\ARbCb} - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )}\right ) - \left (\frac{\ARbCc}{\ARbCb} \right ) \linebreak \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\right ) &0 - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )}\right ) - \left (\frac{\ARbCc}{\ARbCb} \right ) \linebreak \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\right ) &0 - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) - \left (\frac{\ARbCc}{\ARbCb} \right ) \linebreak \left ( 0 - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\right ) &\frac{\BRb}{\ARbCb} - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) - \left (\frac{\ARbCc}{\ARbCb} \right ) \linebreak \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right )}\right )\right )\\ 0 &1 &0 &\frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &\frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &0 - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) &\frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\\ 0 &0 &1 &\frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} &\frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )} &\frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\end{array} \right ) \end{equation*} \begin{equation*} A^{-1} = \begin{pmatrix}\frac{1}{\ARbCb} - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) - \left (\frac{\ARbCc}{\ARbCb} \right ) \linebreak \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\right ) & 0 - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) - \left (\frac{\ARbCc}{\ARbCb} \right ) \linebreak \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right )}\right )\right ) & 0 - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )} {\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) - \left (\frac{\ARbCc}{\ARbCb} \right ) \linebreak \left ( 0 - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\right ) \\\frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) & \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right )}\right ) & 0 - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right )}\right ) \\\frac{0 - \left (\ARdCb \right ) \left ( \frac{1}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{0 - \left (\ARcCb \right ) \left ( \frac{1}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} & \frac{0 - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{1}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )} & \frac{1}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb} \right )}\right )} \end{pmatrix}A^{-1}B = \begin{pmatrix}\frac{\BRb}{\ARbCb} - \left (\frac{\ARbCd}{\ARbCb} \right ) \linebreak \left ( \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right ) - \left (\frac{\ARbCc}{\ARbCb} \right ) \linebreak \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\right )\\ \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb}\right )}{ \ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} - \left (\frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )} \right ) \linebreak \left ( \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb}\right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\right )\\ \frac{\BRd - \left (\ARdCb \right ) \left ( \frac{\BRb}{\ARbCb} \right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\BRc - \left (\ARcCb \right ) \left ( \frac{\BRb}{ \ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}{\ARdCd - \left (\ARdCb \right ) \left ( \frac{\ARbCd}{\ARbCb} \right ) - \left (\ARdCc - \left (\ARdCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right ) \right ) \left ( \frac{\ARcCd - \left (\ARcCb \right ) \left ( \frac{\ARbCd}{ \ARbCb}\right )}{\ARcCc - \left (\ARcCb \right ) \left ( \frac{\ARbCc}{\ARbCb}\right )}\right )}\end{pmatrix}\end{equation*} \end{document}
Here is a link to the pdf showing all of the work for the inverse of a
3x3 matrix:
https://drive.google.com/file/d/0B0MeMQmnEH6ackxsa1VSMmlIVDA/edit?usp=sharing
Back to Mike's Big Data, Data Mining, and Analytics Tutorial
No comments:
Post a Comment